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Revisiting the Anomalous RF Field Penetration Into
a Warm Plasma

Igor D. Kaganovich, Oleg V. Polomarov, and Constantine E. Theodosiou

Abstract—Radio frequency (RF) waves do not penetrate into a
plasma and are damped within it. The electric field of the wave and
plasma current are concentrated near the plasma boundary in a
skin layer. Electrons can transport the plasma current away from
the skin layer due to their thermal motion. As a result, the width
of the skin layer increases when electron thermal velocity is taken
into account. This phenomenon is called the anomalous skin effect.
The anomalous penetration of the RF electromagnetic field occurs
not only for the electric field parallel to the plasma boundary (in-
ductively coupled plasmas), but also for the electric field normal to
the plasma boundary (capacitively coupled plasmas). Such anoma-
lous penetration of the RF field modifies the structure of the RF
sheath in capacitive coupled plasma. Recent advances in the non-
linear, nonlocal theory of the capacitive sheath are reported. It is
shown that separating the electric field profile into exponential and
nonexponential parts yields an efficient qualitative and quantita-
tive description of the anomalous RF field penetration in both in-
ductively and capacitively coupled plasmas.

Index Terms—Anomalous skin effect, capacitive sheath, radio
frequency (RF) discharge, skin layer.

I. INTRODUCTION

ARADIO frequency (RF) electromagnetic field does not pen-
etrateintoaplasmaif thefieldfrequency issmallerthanthe

electron plasma frequency , where and
are the electron charge and mass, respectively, and is the elec-
tron density. Electrons distribute their charge and current so as to
shield out the electromagnetic field. The shielding depends on the
direction of the electric field with regard to the plasma boundary.
If theRFelectricfield isperpendicular to theplasmaboundary, the
RFfieldpenetrates into theplasmaonlywithinadepthof theorder
of the Debye length ,where is the elec-
tron thermal velocity, determined by the electron temperature ,
inelectronvolts.If theRFelectricfieldisdirectedalongtheplasma
boundary, the RF field penetrates into the plasma only within a
depth of the order of the skin depth , where is the speed of
light in vacuum. Here, we consider a “collisionless” plasma, i.e.,
where the collision frequency is small compared to the field fre-
quency and the electrons undergo rare collisions during
the RF cycle; thus, collisions have little effect on field screening
by the plasma.
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Another important scale is the nonlocality or phase-mixing
scale , which determines the scale length of spreading of
the electron current profile in the plasma. To demonstrate the
concept of phase-mixing scale , let us consider a simple
model, where an electron acquires a prescribed velocity kick at
the plasma boundary, in the direction normal to the boundary

(1)

The electron velocity at a distance from the boundary will be
determined by the moment when velocity kick was acquired at
the plasma boundary, i.e., by the time . The electron
current in the plasma is obtained by integrating over contribu-
tions of electrons with a velocity distribution function

(2)

Here, only electrons collided with the wall have to
be taken into account. For a Maxwellian distribution function

, the plasma current in (2) becomes

(3)

where and . The amplitude and phase
of the current are shown in Fig. 1. In the limit , the
integration in (3) can be performed analytically making use of
the method of steepest descent [1] (see Appendix A for more
details). This gives

(4)
where is the phase-mixing scale. Comparison
of the asymptotic calculation result given by (4) with the exact
result of numerical integration in (3) is shown in Fig. 1. From
Fig. 1, it is evident that (4) approximates the exact result for any

within a 15% error bar. The largest error occurs at ,
where half of the electron population with velocity ac-
quired the velocity kick, which gives rise to the electron current

, whereas (4) predicts .
Equation (4) describes the process of phase mixing—elec-

trons with velocities different by have different
phase lag of the order at a distance from the plasma
boundary. Therefore, at , the phase difference
becomes considerable: contributions to the total current from
electrons with different velocities cancel out each other, and
the plasma current vanishes. Interestingly, the spatial profile
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Fig. 1. Phase-mixing of the test particle current generated by velocity kicks �V cos(!t) at the plasma boundary: (a) current amplitude and (b) the current phase
with respect to the phase of the velocity kick at the plasma boundary. Amplitude of the current is normalized on j = en �V , where n is plasma density. Solid
lines show the exact result of numerical integration in (3), dashed lines show the asymptotic, approximate analytical results given by (4).

of the current is not a simple exponential function, but an
exponential function of . As will be shown below
this is typical for the spatial profiles of the electric field and
electron current in warm plasmas due to nonlocal effects.

So far, we solved only test particle problem and did not
take into account the plasma polarization. The current in (3) is
nonuniform; thus, there must be an electron density perturba-
tion according to the continuity equation

(5)

The electron density perturbations polarize the plasma and gen-
erate an electric field, which in turn, affects the electron motion
and the electron current profile. Thus, (3) has to be modified to
include the self-consistent electric field. This requires solving
the Vlasov equation together with the Poisson equation. In his
famous 1946 paper, Landau obtained an analytic solution for the
penetration of the longitudinal RF electric field into a plasma
[2]. Note that he also described “Landau damping” in the same
paper. We briefly review his solution for a small amplitude elec-
tric field in the linear approximation and discuss the more real-
istic case of a large amplitude electric field.

The structure of this review is as follows. In Section II, the
penetration of the longitudinal electric field into the plasma is
described. This case corresponds to the RF sheath in a capac-
itively coupled plasma. In Section III, the penetration of the
transverse electric field into the plasma is studied, which corre-
sponds to an inductively coupled plasma. In Section III-E, it is
shown that anisotropy of the electron velocity distribution func-
tion can have a profound effect on the anomalous skin effect.

II. PENETRATION OF THE RF ELECTRIC FIELD

DIRECTED PERPENDICULAR TO THE PLASMA BOUNDARY

(CAPACITIVELY-COUPLED PLASMA)

A. Small-Amplitude Electric Field

In the previous section, we considered a test particle cur-
rent driven by artificially applied velocity modulations at the

plasma boundary. Here, self-consistent penetration of a small
amplitude RF electric field directed perpendicular to the plasma
boundary is considered. Such a model provides some insight
into the sheath structure of capacitively coupled plasmas.

First, let us consider a stationary negatively biased electrode.
It is well known that the externally applied electric field pene-
trates inside the plasma over distances of the order of the Debye
length . The plasma electrons
are trapped by the plasma potential, , in the potential well

. The electron density obeys the Boltzmann distribution

(6)

The Poisson equation

(7)

can be simplified assuming small potential variations
and a uniform background plasma with

. Thus, (7) becomes

(8)

The solution of (8) is an exponentially decaying electric field

(9)

Here, is the value of the electric field at the plasma boundary.
This is the solution for a static, time-independent sheath electric
field. In the opposite case of the time-dependent electric field,
the electrons are no longer in static equilibrium with the elec-
tric field and Boltzmann distribution given by (6) is not valid,
therefore, the electron density has to be determined from the
Vlasov equation. Landau solved the Vlasov equation coupled
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Fig. 2. Penetration of the external electric field into a plasma. Only part of the electric fieldE (x) is shown (color online). Solid (black) lines show the exact solu-
tion given by (11); dashed (red) lines and subscript appr correspond to the approximate calculation of (14); dotted (green) lines and the subscript std correspond
to the approximate calculation in the limit x � � obtained making use the method of the steepest descend given by (15). RF electric field frequency is 13.56
MHz and the plasma density is 10 cm (lines) and 10 cm (symbols). (Color version available online at http://ieeexplore.ieee.org).

with the Poisson equation analytically in the linear approxi-
mation considering an electrostatic field with small amplitude

and small frequency [2]. Details of
the solution are described in Appendix B.

To summarize, the solution can be separated into three parts

(10)

Here, is the amplitude of the electric field at the plasma
boundary, is the electric field in the plasma bulk
far away from the sheath region, is the dielec-
tric constant of the cold plasma, and is the electric field
in a transient region with a spatial length of order . The
first term is the Debye screening of the external electric field.
The second part describes a small, uniform electric field pene-
trating into the plasma far away from the boundary. The second
and third terms are absent for a time-independent, static applied
electric field and appear only in the case of the RF electric field.
The solution for the transient electric field profile is de-
rived in Appendix B and is given by

(11)

where is the longitudinal plasma permittivity

(12)

and is the plasma dispersion function [4]

(13)

In the limit , only small contribute to the integral and
can be substituted by in the denominator

of (14), which gives

(14)

Application of the method of steepest descent to (14) yields [2]

(15)

where is the phase-mixing scale. The plots of the
amplitude and phase of the electric field profile given by
(11) and the approximate given by (14), and asymp-
totic analytical result given by (15) are shown in Fig. 2.
Fig. 2 shows that the steepest descent method given by (15)
closely approximates (14) already for . However, the
both asymptotic solutions in (14) and (15) approximate the full
solution in (11) only for very large . This is due to
substituting by , which results in a considerable
error for or .

It follows from (15) that the electric field amplitude at
is of order , i.e., it is comparable with the electric

field far away from the boundary .
The origin of the electric field can be explained by an-

alyzing the individual electron dynamics. After passing through
the region of the RF field, an electron acquires changes
in energy and in velocity

(16)

Here, the electron trajectory is ,
and the electric field profile is given by (10). The total velocity
kick is the summation over velocity kicks due to exponential,
bulk and transitional electric fields

(17)
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Substituting an exponential electric field into (16) gives the cor-
responding electron velocity kick

(18)

Substituting the uniform electric field into (16) gives the
electron velocity

(19)

This calculation can also be explained as follows. An electron
has the oscillating velocity in a uniform RF
electric field and a thermal velocity . After a collision with
the wall, an electron changes its velocity direction. If the initial
average velocity was , after the collision with the wall
with specular reflection, the new average velocity will
change according to

(20)

or the average velocity changes to

(21)

which results in the effective velocity kick of (19).
The origin of the electric field in the transition region

is due to the plasma polarization. The velocity perturbations
produce bunches in the electron density, which, in

turn, generate the electric field . The decay of the elec-
tric field is due to phase mixing similarly to the test-par-
ticle case in (4). Thus, generation of the transitional electric field

can be considered as a plasma self-consistency effect.
The electric field generates a significant portion of the

total velocity kick and thus noticeably influences the electron
heating in the RF electric field. Fig. 3 shows the amplitude of
the electron velocity kick due to the interaction with
the electric field given by (10). Electrons with small veloci-
ties pick up a large velocity kick due
to the exponential electric field

. For very large electron velocities ,
the velocity kick given by (18) becomes small and the main
contribution to the velocity kick comes from the uniform elec-
tric field and the collision with the wall,

. In the intermediate range of veloci-
ties , the account of the electric field is important,
as in this case . As is evident from Fig. 3, taking this
electric field into account results in a considerable reduc-
tion of the electron velocity kick for the bulk of the
electron population compared with the case when this electric
field is not taken into account. Note that most models neglect
the electric field , see, for example [7] and [8].

B. Large Amplitude Electric Field

In many practical applications of capacitively coupled
plasmas, the value of the external electric field is large: the

Fig. 3. Electron velocity kick after interaction with the RF electric field. Solid
line shows a velocity kick �u calculated according to the full electric field in
(10). Dashed line shows a �u due to the electric field E exp(�x=a) and the
uniform electric field E only; the dotted line is due to E . RF electric field
frequency is 13.56 MHz and the plasma density is 10 cm . (Color version
available online at http://ieeexplore.ieee.org).

potential drop in the sheath region is typically of the order
of hundreds of volts and is much larger than the electron tem-
perature , which is of the order of a few volts; consequently,
the electric field penetration has to be treated nonlinearly.

In the limit , a wall is charged negatively all time
with an alternating charge in a manner to conduct an ac current,
driven by an external electric circuit. A negative charge pushes
electrons away from the electrode up to a distance where its
electric field is screened by a positive ion density. As ,
the sheath width is much larger than the Debye length, and the
plasma sheath boundary can be considered as infinitely thin. The
position of the boundary is determined by the condition that the
external electric field is screened in the sheath regions when and
where electrons are absent [5]–[7], [9].

Electron interactions with the sheath electric field are tra-
ditionally treated as collisions with a moving potential barrier
(wall). It is well known that multiple electron collisions with
an oscillating wall result in electron heating, provided there is
sufficient phase-space randomization in the plasma bulk. It is
common to describe the sheath heating by considering electrons
as test particles, and neglecting the plasma electric field [8]. As
was pointed out in [7], [10], [11], and [52] accounting for the
electric field in the plasma reduces the electron sheath heating,
and the electron sheath heating vanishes completely in the limit
of uniform plasma density. Therefore, an accurate description
of the RF fields in the bulk of the plasma is necessary for cal-
culating the sheath heating. The electron velocity is oscillatory
in the sheath, and as a result of these velocity modulations, the
electron density bunches appear in the region adjacent to the
sheath, similar to the previously described case of small-ampli-
tude field, see Fig. 4. These electron density perturbations decay
due to phase mixing over a length of order , where is the
electron thermal velocity, and is the frequency of the electric
field. The electron density perturbations polarize the plasma and
produce an electric field in the plasma bulk. This electric field, in
turn, changes the velocity modulations and correspondingly in-
fluences the electron density perturbations. Therefore, electron
sheath heating has to be studied in a self-consistent nonlocal
manner assuming a finite-temperature plasma.
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Fig. 4. Schematic of density bunches formation in the region adjacent to the
sheath. Plasma-sheath boundary is shown by bold solid line. Electrons with the
same velocity v and distance apart� v =! collide with the sheath. First elec-
tron looses its energy and decelerates, whereas the second acquire energy and
accelerates. As a result, the distance between two electrons decreases, which
produces electron density perturbations.

Notwithstanding the fact that particle-in-cell (PIC) simula-
tions results have been widely available for the past decade [12],
[13], a basic understanding of the electron heating by the sheath
electric field is incomplete, because no one has studied the elec-
tric field in the plasma bulk using a kinetic approach, similar to
the anomalous skin effect for the inductive electric field [3]. In
this regard, analytical models are of great importance because
they shed light on the most complicated features of collision-
less electron interactions with the sheath. In [14], an analytical
model was developed to explore the effects associated with the
self-consistent nonlocal nature of this phenomenon.

One of the approaches to study electron sheath heating is
based on a fluid description of the electron dynamics. For the
collisionless case, closure assumptions for the viscosity and heat
fluxes are necessary. In most cases, the closure assumptions are
made empirically or phenomenologically [13], [15]. The closure
assumptions have to be justified by direct comparison with the
results of kinetic calculations as is done, for example, in [16]
and [17]. Otherwise, inaccurate closure assumptions may lead
to misleading results as discussed below. Traditional assump-
tions have been made for discharge parameters [5]–[7], [9], as
follows. The discharge frequency is assumed to be small com-
pared with the electron plasma frequency. Therefore, most of
the external electric field is screened in the sheath region by an
ion space charge. The ion response time is typically larger than
the inverse discharge frequency, and the ion density profile is
quasi-stationary. There is an ion flow from the plasma bulk to-
wards the electrodes. In the sheath region, ions are being accel-
erated towards the electrode by the large sheath electric field,
and the ion density in the sheath region is small compared with
the bulk ion density.

To model the sheath-plasma interaction analytically, the ad-
ditional simplifying assumptions of two-step ion density pro-
file have been adopted [14], [20]. In the present analytical treat-

Fig. 5. Schematic of a sheath. Negatively charged electrode pushes electrons
away at different distances depending on the strength of the electric field at the
electrode. Shown are the density and potential profiles at two different times.
Solid line is at the time of maximum sheath expansion.

ment, the ion density profile is assumed fixed and is modelled
in a two-step approximation: the ion density is uniform in
the plasma bulk, and the ion density in the sheath is
also uniform (see Fig. 5). At the sheath-plasma boundary, there
is a stationary potential barrier for the electrons , so that
only the energetic electrons reach the sheath region. The poten-
tial barrier is determined by the quasi-neutrality condition, i.e.,
when the energetic electrons enter the sheath region, their in-
stantaneous density is equal to the ion density

The electron density profile is time-dependent in response
to the time-varying sheath electric field. The large sheath elec-
tric field does not penetrate into the plasma bulk. Therefore,
the quasi-neutrality condition holds in the plasma bulk, i.e., the
electron density is equal to ion density, . In the sheath
region, the electrons are reflected by the large sheath electric
field. Therefore, for , and for

, where is the position of the plasma-sheath
boundary [5]–[7], [9]. From Maxwell’s equations, it follows that

, where the total current is the sum of the displace-
ment current and the electron current. In the one-dimensional
(1-D) case, the condition yields the conservation of
the total current [2], [9]

(22)

where is the amplitude of the RF current controlled by an
external circuit and is the initial phase. In the sheath, electrons
are absent in the region of large electric field, and (22) can be
integrated to give [9]

(23)
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where Poisson’s equation has been used to determined the spa-
tial dependence of the sheath electric field. The first term on
the right-hand side of (23) describes the electric field at the
electrode and the second term relates to the ion space charge
screening of the sheath electric field. The position of the plasma-
sheath boundary is determined by the zero of the sheath
electric field, . From (23), it follows that

(24)

where is the amplitude of the plasma-sheath
boundary velocity. The ion flux on the electrode is small
compared with the electron thermal flux. Because electrons
attach to the electrode, the electrode surface charges negatively,
so that in a steady-state discharge, the electric field at the
electrode is always negative, preventing an electron flux on
the electrode. However, for a very short time (in the vicinity
of ), the sheath electric field vanishes,
allowing electrons to flow to the electrode for compensation of
the ion flux. Note that there is a large difference between the
sheath structure in the discharge and the sheath for obliquely
incident waves interacting with a plasma slab without any
bounding walls. Because electrodes are absent, electrons can
move outside the plasma, and the electric field in the vacuum
region, , may have an alter-
nating sign. Therefore, electrons may penetrate into the region
of large electric field during the time when [18],
[19]. In the discharge, however, because the sheath electric field
given by (23) always reflects electrons, the electrons never enter
the region of the large sheath electric field, which is opposite to
the case of obliquely incident waves.

I) COLLISIONLESS HEATING IN CAPACITIVE SHEATH MAKING

USE OF THE TWO-STEP ION DENSITY PROFILE MODEL: The cal-
culations based on the two-step ion density profile model are
known to yield discharge characteristics in good agreement with
experimental data and full-scale simulations [20].

For analytical calculation of the RF electric field inside the
plasma, a linear approximation is used for the plasma conduc-
tivity. The validity of the linear approximation is based on the
fact that the plasma-sheath boundary velocity and the mean elec-
tron flow velocity are small compared with the electron thermal
velocity, , [9], [12]. The important spatial scale is
the length scale for phase mixing, . The sheath width satis-
fies because . Therefore, the sheath
width is neglected, and electron interactions with the sheath
electric field are treated as a boundary condition. The colli-
sion frequency is assumed to be small compared with the
discharge frequency , and correspondingly the mean
free path is much larger than the length scale for phase mixing.
Therefore, the electron dynamics is assumed to be collisionless.
The discharge gap is considered to be sufficiently large com-
pared with the electron mean free path, so that the influence of
the opposite sheath is neglected. The effects of a finite gap width
leading to bounce resonances have been discussed in [21] and
[22].

The electron interaction with the large electric field in the
sheath is modelled as a collision with a moving oscillating rigid

barrier with velocity [5]. After a colli-
sion with the plasma-sheath boundary—modelled as a rigid bar-
rier moving with velocity —an electron with initial ve-
locity acquires a velocity . Therefore, the power
deposition density transfer from the oscillating plasma-sheath
boundary is given by [5], [7]

(25)

where is the electron mass, is the electron velocity
distribution function in the sheath, and denotes a time av-
erage over the discharge period. Introducing a new velocity dis-
tribution function , (25) yields
[5], [7]

(26)

where is the electron velocity relative to the
oscillating rigid barrier. From (26) it follows that, if the function

is stationary, then ( ) and there is no collisionless
power deposition due to electron interaction with the sheath [7],
[15], [23]. For example, in the limit of a uniform ion density
profile is stationary (in an oscillating reference
frame of the plasma-sheath boundary), and the electron heating
vanishes [7], [9]. Indeed, in the plasma bulk, the displacement
current is small compared with the electron current, and from
(22) it follows that the electron mean flow velocity in the plasma
bulk

(27)

is equal to the plasma-sheath velocity , from (24). There-
fore, the electron motion in the plasma is strongly correlated
with the plasma-sheath boundary motion. From the electron
momentum equation it follows that there is an electric field,

, in the plasma bulk. In a frame of ref-
erence moving with the electron mean flow velocity, the sheath
barrier is stationary, and there is no force acting on the electrons,
because the electric field is compensated by the inertial force

. Therefore, electron interaction with
the sheath electric field is totally compensated by the influence
of the bulk electric field, and the collisionless heating vanishes
[10]. The example of a uniform density profile shows the impor-
tance of a self-consistent treatment of the collisionless heating in
the plasma. If the function is nonstationary, there is net
power deposition. In [14], a kinetic calculation is performed to
yield the correct electron velocity distribution function
and, correspondingly, the net power deposition.

The electron motion is different for low-energy electrons with
an initial velocity in the plasma bulk , where

(28)



702 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006

and for energetic electrons with velocity . The low
energy electrons with initial velocity in the plasma
bulk are reflected from the stationary potential barrier

, and then return to the plasma bulk
with velocity . High energy electrons enter the sheath region
with velocity

(29)

They acquire a velocity after collision with the
moving rigid barrier, and then return to the plasma bulk with a
velocity [24].

As the electron velocity is modulated in time during reflec-
tions from the plasma-sheath boundary, so is the energetic elec-
tron density (by continuity of the electron flux). This phenom-
enon is identical to the mechanism of klystron operation [25].
The perturbations in the energetic electron density yield an elec-
tric field in the transition region adjusted to the sheath, see Fig. 4.

The solution for the electric field was obtained ana-
lytically in [14]. Similar to the previous section, the solution
is an expression for the inverse Fourier transform. It cannot
be represented in an analytical form and has to be simu-
lated numerically. This simulation has been performed for

, and a Maxwellian electron
distribution function. The electric field profile is close to

, where , and
for . For , the

electric field profile is no longer a simple exponential function,
which is similar to the case considered in the previous section.

The difference in phase of the currents of the energetic and
low-energy electrons was observed in [13], but it was misin-
terpreted as the generation of electron acoustic waves. Electron
acoustic waves are similar to the ion sound waves where cold
electron population play role of ions. Electron acoustic waves
can be excited if there is a complex value of , which is the root
of the plasma dielectric function for a given , with
small damping . For a Maxwellian electron dis-
tribution function, such root does not exist when . How-
ever, electron acoustic waves can exist if the plasma contains
two groups of electrons which have very different temperatures
[26]. The wave phase velocity is ,
where and are the electron densities of cold and hot elec-
trons, respectively, and is the temperature of the hot elec-
trons. Electron acoustic waves are strongly damped by the hot
electrons, unless and , where is the elec-
tron temperature of the cold electrons [26]. In the opposite limit,

, electron acoustic waves do not exist [26]. In capaci-
tively coupled discharges, the electron population stratifies into
two populations of cold and hot electrons, as has been observed
in experiments [27] and simulation studies [28], [29]. Cold elec-
trons trapped by the plasma potential in the discharge center do
not interact with the large electric fields in the sheath region and
have a low temperature. Moreover, because of the nonlinear evo-
lution of plasma profiles, the cold electron density is much larger
than the hot electron density [28]. Therefore, weakly damped
electron acoustic waves do not exist in the plasma of capaci-
tively coupled discharges. Reference [13] used the fluid equa-

tion and neglected the effect of collisionless dissipation, thus ar-
riving at the incorrect conclusion about the existence of weakly
damped electron acoustic waves.

The power deposition is given by the sum of the power trans-
ferred to the electrons by the oscillating rigid barrier in the
sheath region and by the electric field in the transition region

(30)

Note that can be negative. Calculations making use of the
Vlasov equation yield [14]

(31)

where

(32)

is the diffusion coefficient in velocity space, and is the
change in the electron velocity after passing through the tran-
sition and sheath regions

(33)

where is the Fourier transform of the electric field .
First term describes the velocity acquired by fast electrons

in collisions with the sheath; the second is due to
the bulk electric field and collisions with either the potential
barrier or sheath; and the third is due the electric field in
the transitional region . A plot of is shown in
Fig. 6. Taking into account the electric field in the plasma (both

and ) reduces for energetic electrons
and increases for slow electrons . Therefore,
the electric field in the plasma cools the energetic electrons
and heats the low-energy electrons, respectively. Similar ob-
servations were made in numerical simulations [13]. Fig. 7
shows the dimensionless power density as a function of .
Taking into account the electric field in the plasma (both
and ) reduces the total power deposited in the sheath region.
Interestingly, taking into account only the uniform electric
field gives a result close to the case when both and

are accounted for. The electric field redistributes the
power deposition from the energetic electrons to the low en-
ergy electrons, but does not change the total power deposition
(compare lines (a) and (b) in Figs. 6 and 7). Therefore, the
total power deposition due to sheath heating can be calculated
approximately from (31), taking into account only the electric
field . This gives

(34)

The result of the self-consistent calculation of the power dissipa-
tion in (34) differs from the non-self-consistent estimate by the
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Fig. 6. Plot of the averaged square of the dimensionless velocity kick as a func-
tion of the dimensionless velocity for the conditions in Fig. 1, taking into account
(a) both E (x) and E —solid line; (b) only E —dashed line; and (c) no elec-
tric field—dotted line.

Fig. 7. Plot of the dimensionless power density as a function of the ratio of the
bulk plasma density to the sheath density (color online), taking into account (a)
bothE (x) andE —solid (black) line; (b) onlyE —dashed (red) line; and (c)
no electric field inside the plasma—dotted (green) line. (Color version available
online at http://ieeexplore.ieee.org).

last term in (34), which contributes corrections of order
to the main term.

II) COLLISIONLESS HEATING IN CAPACITIVE SHEATH

MAKING USE OF NONUNIFORM ION DENSITY PROFILE: Based
on results of exact linear kinetic theory for the two-step ap-
proximation of the ion density profile in sheath, the power
dissipation in the sheath can be calculated taking into account
more realistic model of ion density profile in the sheath. The
ion density profile was calculated analytically in [7], [30], and
[31], and is given by a parametric function of the phase of the
sheath motion

(35)

where

(36)

and profile is

(37)

Note that cgs units are used rather than the MKS units of [7],
[30].

The velocity of plasma-sheath boundary is given by current
conservation law

(38)

The outlined above concept of diffusion in energy can be used
to calculate the power deposition. However, a more conventional
arguments making use of (25) give the same results when neces-
sary modifications stemming from the self-consistency require-
ments are applied, chiefly by the requirement of conservation of
the electron current in plasma phase of the sheath.

As discussed above, if the plasma bulk has a uniform density
, far a way from the sheath (on distances larger than ),

the electron flow velocity is given by (27) and the electric
field . In the frame of reference moving
with the electron mean flow velocity , there is no force
acting on the electrons and there is no current, as discussed
above. This makes it convenient to consider interaction with the
sheath in this reference frame. An electron with velocity ac-
quires velocity after collision with the sheath,
in the reference frame moving with . If ion density profile
is uniform in the sheath, , and there is no change in
electron energy if , as discussed above. If

and the reflection from the moving wall produces an
electron current. To conserve the electron current in plasma, an
electric field is generated on distances of order similar
to the one calculated above for the two-step profile of ion den-
sity. It is difficult to calculate this electric field for the general
case of nonuniform ion density profile, as it requires solving an
integral equation [32]. Instead of direct calculation, the supposi-
tion can be used that this electric field does not change the total
power balance. This supposition is supported by the result of
two step model, that this field redistributes the power from fast
electron to slow electrons without changing the total power bal-
ance, see Fig. 7. Calculating the power transfer from the sheath
electric field to plasma electron in the reference frame moving
with gives

(39)

The difference between (25) and (39) is that is substituted
by and to of (29) where slowing of an electron
energy by the ambipolar potential is taken into account. Note



704 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006

that is stationary EDF in the reference frame moving
with . Equation (39) gives

(40)
and accounting that for , (40)
becomes

(41)

Note that (41) could have been obtained making use of energy
diffusion concept given by (31) and (32) with velocity kick

(42)

Here, the velocity kick does not account for the electric
field and, in contrast to two-step model, bulk electrons
can reach the sheath region—there is no a potential barrier in
front of the sheath, rather it spreads out across entire width
of the sheath. These two effects account for the difference
between (33) and (42). Note that there is an additional heating
due to and the electron collision with the ambipolar po-
tential when electrons do not reach the moving plasma-sheath
boundary. In case of sharp boundary assumed in two-step
model, it yields velocity kick with the amplitude ; however,
when the ambipolar potential is not steep than the velocity
kick is much smaller due to “softness of interaction” [10]

[11], [52]. Here,
is the electron velocity determined

by the ambipolar potential in the plasma phase of the sheath. A
further detailed study is needed to quantify this effect, which
should involve cumbersome calculations for profile and
heating accounting for both and , the first attempt has
been recently initiated [32].

Assuming a Maxwellian EEDF
and substituting

from (29) gives .
Substituting from (38) into (41) gives

(43)
The result (43) differs from the result of [7], [30], [31] by sub-
stitution of with . This provides zero heating
in case of a uniform ion density profile. Substituting ion density
profile [7], [30], and [31]

(44)

where

(45)

Fig. 8. Plot of the averaged power density in CCP sheath as a function of ratio
of the plasma bulk density to the sheath density (color online). Dimension-
less power deposited in one sheath G(H) normalized according to (46) as a
function of ion density nonuniformity in the sheath H = 8n =5�n . Pre-
dictions of (47) are shown in solid (black) line and fit G(H) = H=(H +
1:1)—dashed (blue) line; results of ([7], [30])—dashed–double-dotted (cyan)
line and G(H) = 70=3(H + 60) of ([15])—dotted (red) line. Dashed–dotted
(magenta) line shows amplitude of the RF voltage on sheath normalized on elec-
tron temperature V=T = �H[8 + 125�H=48]=4 [7], [30]. (Color version
available online at http://ieeexplore.ieee.org).

into (43) gives

(46)

where

(47)

In the limit of large , (46) coincides with the result of [7],
[30]. Note that power dissipation is determined by the region
where ion density is the smallest, i.e., at the electrode

and

(48)

Functions obtained by different theories are shown in
Fig. 8. For usual CCP operation conditions, the capacitive RF
bias is of order few hundred volts, V and ,
which gives . The current theory predicts collisionless
power deposition by the sheath 70% of the model, which does
not account for influence of self-consistent field in the plasma
on electron dynamics [5], [7]. The fluid theory of [15] pre-
dicts much less about 40% of power deposition compared with
Lieberman’s model. The fluid theory was verified by the au-
thors’ PIC simulations. The suppositions of fluid theory that
modification of EDF by the interaction with the sheath can be
described by modification of the electron temperature only con-
tradicts the analytical kinetic model in two-step approximation,
which predicts EDF is close to Lieberman’s model plus pertur-
bation caused by the transitional electric field . Such a big dif-
ference between various theories and simulation results requires
additional verification, as well as, detailed comparison with ex-
perimental data. However, the direct comparison with the ex-
perimental data is complicated by a non-Maxwellian EEDF in
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CCP discharges and requires the self-consistent kinetic mod-
eling similar to one performed in [29], [33].

A future development should provide a self-consistent, ki-
netic analysis with a nonuniform ion density profile and
is being now underway [34]. Such a study has been currently
performed only for inductively coupled discharges.

III. PENETRATION OF THE RF ELECTRIC FIELD INTO AN

INDUCTIVELY COUPLED PLASMA

Low-pressure inductively coupled RF discharges are often
operated in the nonpropagating regime, when the driving RF
field penetrates into plasma only within a skin layer of width

near the antenna, i.e., exhibits a skin effect. Not only the RF
field, but, in this case, also the resulting induced electric cur-
rent is concentrated near the surface of the plasma. Depending
on the local, or nonlocal nature of the relation between the elec-
tric current induced in plasma and the RF electric field , the
skin effect is called normal, if the dependence of the current on
the electric field is local, or anomalous, if the dependence of the
current on the electric field is nonlocal [35]–[37].

To differentiate between the two regimes of the skin effect, it
is convenient to introduce the nonlocality parameter [36]

, where is the effective electron
mean free path and

(49)

is the depth of the normal skin effect. The parameter

(50)

is a fundamental measure of plasma current nonlocality. In the
local limit , the effective mean free path is small com-
pared with the skin depth , and the current density at a
particular point in space can be considered as a function of the
electric field at the same point (Ohm’s law).
In the opposite limit , the mean free path exceeds the
skin depth , the relation between the current and the field

is no longer local, because the con-
ductivity has a spatial dispersion.

The penetration of the RF electric field into the plasma is
described according to Faraday’s and Ampere’s laws

(51)

(52)

For a transverse harmonic electric field in 1-D geometry
, Faraday’s and Ampere’s laws give

(53)

where the current is the plasma electron current
(the ions are considered stationary), which has to be calculated
making use of the electron kinetic equation, similar to the case of
the penetration of the longitudinal electric field into the plasma
described in the previous section.

A. Normal Skin Effect

In the limit of the normal skin effect , the electron
thermal motion can be neglected. The electron flow velocity
may be obtained from Newton’s law taking into account the drag
force due to electron neutral collisions

(54)

This gives for the electron current the Ohm’s
law relationship

(55)
where

(56)

The plasma current density is proportional to the electric field
at the same point of space with a proportionality coefficient that
is the complex conductivity of the cold plasma. Substituting
Ohm’s law (55) with plasma conductivity from (56) into (53)
gives the solution of the wave equation

(57)

where . Here, we neglected small terms
associated with the displacement current in the limit ,
which is valid for the most plasma parameters in ICP discharges.
The electric field can be equivalently expressed as

(58)

where is the normal skin depth in (49), and .

B. Anomalous Skin Effect

The case of anomalous skin effect for low-pressure
inductively coupled plasmas is more complicated compared to
the case of normal skin effect, and requires a more elaborate
mathematical and numerical treatment to uncover its intrinsic
complexity. In the limit , the electron mean free path
is large compared with the skin depth, and the electron current
is determined not by the local RF electric field (Ohm’s law),
but rather is a function of the whole profile of the RF electric
field over distances of order . Therefore, a rather complicated
nonlocal conductivity operator has to be determined for the cal-
culation of the RF electric field penetration into the plasma.

In the case of a uniform plasma, the Vlasov and Maxwell
equations can be solved by applying a Fourier transform
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[35]. For a transverse harmonic electric field in 1-D geom-
etry , a spatial Fourier harmonic of the current

simplifies to become [37], [38]

(59)

Details of the solution are given in Appendix C. The electric
field profile is given by the inverse Fourier transform of (53)

(60)

Here, is the surface current in the antenna and is
transverse plasma permittivity, which for a Maxwellian EEDF
is given by [3]

(61)

Note the module sign as an argument of the plasma dispersion
function. It reflects the proper symmetry of the continued elec-
tric field profile into semi-plane and also the proper pole
position of the plasma dispersion function [2], [11], [52]. Ne-
glecting the module sign results in erroneous results.

The solution for the electric field (60) has been described in
many reviews and textbooks [3], [8], [11], [52], [37]. Here, we
only focus on a property of the solution (60) not commonly
acknowledged in the literature.

In the limit or , the plasma dielectric func-
tion can be substituted by its limiting value at small arguments

. Introducing the anomalous skin depth

(62)

and substituting into (61) and into (60) gives

(63)

The integral in (63) cannot be calculated analytically, but it
can be transformed into an integral in the complex plane by
substituting . The contour of the integration should
encompass branch point of the function and has to come
around the imaginary axis. This gives [11], [52]

(64)

(65)

where and is
the electric field at the plasma boundary at stands
for principal value of the integral. The last term represents the
contribution of the integral around the imaginary -axis and the

exponential terms originate from the poles. The electric field at
can be calculated analytically

(66)

From Maxwell’s equations it follows that the magnetic field near
the coil is . Correspondingly, the derivative of the
electric field at the plasma boundary is

(67)

The characteristic decay length of the electric field can be intro-
duced as [40], [41]

(68)

The electric field profile from (69) is compared in Fig. 9 with
the exponential profile

(69)

A more conventional plot of the amplitude and phase of the
electric fields is shown in Fig. 10.

C. Spatially Averaged Electric Field, in the
Limit of a Strong Anomalous Skin Effect

The most apparent difference between the anomalous skin
effect and the normal skin effect is that the amplitude of the RF
field is nonmonotonic in the limit of anomalous skin effect and
monotonic (exponential) for the normal skin effect. Moreover,
in the case of the extremely anomalous skin effect, in the limit

, the spatially averaged RF electric field tends to zero
[11], [52]

(70)

In other words, the phase of the electric field changes by inside
the skin layer, see Fig. 10(b). The spatially averaged electric
field is given by the Fourier component at , i.e.,

(71)

Substituting the Fourier component of the electric field from
(60) into (71) gives

(72)

(73)

From (73), it is evident that as the nonlocality parameter tends to
infinity, the averaged electric field tends to zero. This property
of the electric field profile is consistent with nonlocality of the
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Fig. 9. Plot of the RF electric field as a function of the normalized coordinate x/� (color online). Solid (black) curve corresponds to the solution in the limit
� = v ! =c! = 1; dashed (red) line—� = 93 (plasma parameters n = 10 cm ; T = 3 eV, f = 1 MHz). Dotted (green) and dash–dotted (blue) lines
shows the skin approximation in (68) and (69): (a) real and (b) imaginary part of the electric field. (Color version available online at http://ieeexplore.ieee.org).

Fig. 10. Plot of the RF electric field and electron current as a function of the normalized coordinate x=� (color online). Same profiles as in Fig. 9, shown are (a)
amplitude, and (b) phase with respect to the phase of the electric field generated by the field in vacuum. (Color version available online at http://ieeexplore.ieee.org).

electron current. The electric field profile and the current profile
are coupled to each other by (53). Therefore, the main part of
the current and the electric field should decay on distances of
order , see Fig. 10. However, if the electric field profile has a
nonzero average, the fast electrons will pick up a velocity kick
from the skin layer and will transport the current over distances
of order , where the electric field vanishes. This
would contradict Maxwell’s equations. Therefore, zero average
of the electric field is necessary and an important property of
the electric field profile in the limit of the extreme anomalous
skin effect .

The penetration length is defined in textbooks [40], [41] as

(74)

From the above discussion, it follows that this definition is con-
fusing, because in the limit of the anomalous skin effect the
above defined penetration length is and is not a good

measure of penetration length of the electric field. A better def-
inition would be

(75)

In the limit of the strong anomalous skin effect, i.e., ,
numerical calculation gives

(76)

From Fig. 10, it is evident that in the region the ampli-
tude of the electric field can be approximated by the exponential
profile in (69) with the decay length

(77)

Note that the penetration length defined by (75), is nearly
twice as large as the initial decay length of the electric field
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amplitude near the plasma-wall boundary . This is due to the
pronounced long tail in the profile of the electric field.

Similarly, if we introduce the penetration length of the current

(78)

numerical simulation gives

(79)

This result contradicts to claim of [40] and [42], that the mag-
netic field and current penetration lengths are much longer than
the electric field penetration length. This claim is the result of
an inaccurate definition of the penetration length.

In an attempt to reduce the phenomenon of the anomalous
skin effect to the normal skin effect, many authors have substi-
tuted the correct profile of the electric field in (64) by an expo-
nential profile with some fitting procedure for

[43]–[45], [53]. By doing so, the property of the electric field
in the limit of anomalous skin effect in (70) is violated. This
leads to overestimation of the electron heating [11], [52]. Under
the conditions of the anomalous skin effect , elec-
trons acquire a velocity kick

(80)

If satisfies the condition in (70), the electron velocity
kick after passing through the skin layer is much smaller than in
the case of an exponential electric field profile, which does not
satisfy the property , as .

D. Analytical Separation of the Electric Field Profile Into an
Exponential Part and a Far Tail

Consider an exponential profile of the electric field in a
plasma

(81)

where is a real positive number. The velocity perturbation in
this electric field becomes

(82)

The velocity kick can be separated into a purely exponen-
tial part and a nonexponential part. Substituting the electron tra-
jectory for gives

(83)

For , the velocity acquired by an electron can be repre-
sented as the difference between the velocity kick acquired after

a full pass through the skin layer and the contribution from the
part of the skin layer , i.e.,

(84)

The second part of the integral in (84) gives an exponen-
tial profile for the velocity kick, similar to (83)

(85)

The first part of the integral in (84) gives

(86)

(87)

Here, is the velocity kick acquired during the pass through
the entire skin layer. The time corresponds to the mo-
ment the electron collides with the wall.

Substituting from (83) and (85) gives for the expo-
nential part of the current

(88)

(89)

or, after integration, the exponential profile of the current be-
comes

(90)

The asterisk denotes the complex conjugate. Note that (90) can
be derived from (59) with the substitution and by ac-
counting for the following property of the dispersion function
[4]

(91)

The exponential part of the profile should satisfy Maxwell’s
equation (53). This gives an expression for

(92)

Note that because in (92) has only purely imaginary and pos-
itive parts, is a real positive number, as it was assumed to be.

The nonexponential part of the electron velocity kick in (86)
generates a nonexponential part of the current profile, which de-
cays over a spatial scale of order due to the phase mixing,
as the phase of the velocity kick in (86) is dif-
ferent for electrons with different . The current and electric
field profiles are essentially nonexponential, similar to (4) for
longitudinal velocity kicks, as discussed above. In contrast to
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Fig. 11. Plot of the RF electric field as a function of the normalized coordinate x!=V for plasma parameters n = 10 cm ; T = 3 eV, f = 13:56 MHz
(color online). Shown are (a) the amplitude and (b) the phase. Solid lines show the exact electric field profile E(x) calculated according to (60); dashed (red) line,
the exponential part of the electric field E (x) = E exp(�k x) with k from (92); dotted line (green), the difference of the two E (x); and, chain (cyan) line,
E (x) shows the asymptotic calculation for E in (C22). Subscript y is omitted in the electric field. (Color version available online at http://ieeexplore.ieee.org).

the test particle case, the electric field is determined by combi-
nation of two effects: phase mixing of the current generated by
the velocity kicks of exponential part of the electric field and the
plasma screening of this currents as . As a result,
the analytical expression for nonexponential part is rather com-
plicated.

Details of the exact analytical calculation of the electric field
profile separation is given in Appendix C. Applying a proce-
dure similar to that of Landau’s treatment [2] for the longitu-
dinal electric field, the integral in space in (60) can be sep-
arated into an integral over an analytic function in the region

and an integral over some nonanalytic function
in the region . To do so, the plasma permittivity has
to be analytically continued from the real axis ,
into the complex plane, see Appendix C for details. The first
integral can be readily calculated using the theory of residues.
In the upper half-plane of the complex , there exists only one
pole of the analytically continued function of the plasma per-
mittivity continued from . The value of the pole is equal
to , given by (92).

In the limit , where .
Substituting this value for the plasma dielectric function into
(92) yields , i.e., the normal skin layer length

in (49) for and . Fig. 11 shows the profile of
the electric field for the same typical ICP parameters: plasma
density cm electron temperature eV, and
discharge frequency MHz (color online). Shown
are the exact electric field profile calculated according
to (60), the exponential part of the electric field

(93)

with from (92), and the difference of the two

(94)

and the asymptotic calculation for in (C22) .
For these plasma parameters, the skin effect is neither normal
nor anomalous: . Notwithstanding the fact that
the parameter is of order unity, the main part of the
electric field is close to the exponential profile in (93) with
from (92), . As evident from Fig. 11, the non-
exponential part is small, , everywhere where
the electric field is substantial, or up to distances five times of
skin depth, for . The tail of the electric
field profile for is nonexponential and dominated
by .

In the limit of the anomalous skin effect
, where . Substituting this value

for the plasma dielectric function into (92) yields
which is very close to the skin impedance approximation in
(69) which corresponds to —a 12% difference.
As a result, the exponential profile in (93) approximates well
the exact profile of the electric field over distances within a
few skin depths even in the limit of the strong anomalous skin
effect, as is evident in Fig. 12. However, the nonexponential
part dominates at in accord with the
requirement in (70).

E. Surface Impedance

An important plasma characteristic is the surface impedance,
which is given by the ratio of the electric field to the RF magnetic
field or the coil current at the plasma boundary [3]

(95)

where

(96)

is the magnetic field near the antenna. The total power de-
posited per unit area into the plasma is determined by the energy
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Fig. 12. Plot of the RF electric field as a function of the normalized coordinate x!=V for plasma parameters n = 10 cm ; T = 3 eV, f = 1 MHz, similar
to Figs. 9 and 10. Shown are (a) amplitude and (b) phase. Solid lines show the exact electric field profile E(x) calculated according to (60); dashed (red) line, the
exponential part of the electric field E (x) = E exp(�k x) with k from (92); dotted line (green) the difference of the two E (x); chain (blue) line represents
the limiting case of strong anomalous skin effect �!1 E (x), and dashed and double dotted (cyan) line shows E (x), the asymptotic calculation for E
in (C22). Subscript y for the electric fields is omitted. (Color version available online at http://ieeexplore.ieee.org).

flux dissipated into the plasma or the time-averaged Poynting
vector

(97)

Substituting the electric field from (95) and the magnetic field
(96) into (97) relates the power to the real part of the surface
impedance

(98)

The imaginary part of the surface impedance describes the
plasma inductance.

The surface impedance can also be used to estimate the pene-
tration length in the surface impedance approximation given by
(68). Substituting the electric field from (95) and the magnetic
field (96) into (68) relates the penetration depth and the surface
impedance

(99)

The surface impedance can be calculated making use of (60),
[3], i.e.,

(100)

which requires numerical integration. On the other hand, we can
use the results of the previous subsection that the main part of
the electric field is an exponential function in (93) with given
by (92). From (99), the imaginary part of the surface impedance
can be obtained substituting

(101)

A pure exponential profile yields only the imaginary part of the
surface impedance. The real part of the impedance can be calcu-
lated by computing the power dissipated by electrons from the
skin layer [43]

(102)

where is the velocity kick acquired by an electron after
passing through the skin layer, which is given by (87). Here,

is the temporal average of the electron energy
change in the skin layer and is the electron flux on the wall.
Equation (98) becomes

(103)

Because the imaginary part of impedance is large compared with
its real part, only the imaginary part can be included on the right
hand side in (103). Fig. 13 shows the real and imaginary parts
of the surface impedance versus the discharge frequency calcu-
lated exactly, i.e., making use of (100), and approximately from
(101) and (103). Also shown at the top of this figure, is the ratio
of the actual skin depth from (92) to the normal skin
depth calculated in the cold plasma approximation given by
(49). From Fig. 13, it is evident that within 50% accuracy, the
impedance calculation can be based on the exponential profile
in (93) for discharge frequencies higher than 1 MHz [44]. How-
ever, for lower frequencies, the assumption of purely exponen-
tial profile leads to overestimation of the electron heating and
plasma resistivity up to a factor of 3 for MHz, see Fig. 13.
This is because the important property of the electric field pro-
file under the conditions of strong anomalous skin effect in (70)
is being violated. Note that at these low frequencies, taking into
account a small but finite collision frequency or nonlinear ef-
fects may be important.
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Fig. 13. Plot of the real and imaginary parts of the surface impedance versus
discharge frequency calculated exactly making use of (100) and approximately
using (101) and (103) in the limit of collisionless plasma � � ! (color online).
Also shown is the ratio of the actual skin depth � = 1=k given by (92) to the
skin depth calculated in the cold plasma approximation � (49), (top). (Color
version available online at http://ieeexplore.ieee.org).

F. Anomalous Skin Effect for an Anisotropic Electron Velocity
Distribution

The anomalous skin effect in a plasma with a highly
anisotropic electron velocity distribution function (EVDF) is
very different from the skin effect in a plasma with the isotropic
EVDF. In [47], an analytical solution was obtained for the
electric field penetrating into plasma with the EVDF described
by a Maxwellian with two temperatures , where is
the direction along the plasma boundary and is the direction
perpendicular to the plasma boundary. Under the conditions

(104)

the skin layer was found to consist of two distinct regions of
width of order and , where
are the thermal electron velocities in and directions, and
is the incident electric field frequency. The calculation is based
on (60), where the dielectric permittivity has to be modified for
an anisotropic EEDF to become

(105)

In the case of anisotropic EEDF under conditions in (104), the
integral in (60) has two poles and the integration over the branch

Fig. 14. Electric field in the plasma with v = 0:1c; ! = 0:01! ; T =T =
50. Solid line shows the real part of the electric field profile obtained from
the full solution. Dashed line corresponds to the smooth part of the solution
� exp(�!x=v ).

point does not contribute. As a result, the profile of the
electric field is a sum of the two complex exponents

(106)

where is given by

(107)

and is given by

(108)

The profile of the electric field is shown in Fig. 14. The skin layer
contains multiple oscillations of the electric field, in striking
contrast to the case of an isotropic EEDF.

IV. CONCLUSION

We have shown that electrons can transport the plasma cur-
rent away from the skin layer due to their thermal motion over
distances of order . As a result, the width of the skin layer
increases when electron temperature effects are taken into ac-
count. Anomalous penetration of the RF electric field occurs not
only for waves propagating transversely to the plasma boundary
(inductively coupled plasmas), but also for waves propagating
along the plasma boundary (capacitively coupled plasmas). It
was shown that separating the electric field profile into expo-
nential and nonexponential parts yields an efficient qualitative
and quantitative description of the anomalous skin effect. Ac-
counting for the nonexponential part of the profile is important
for the calculation of the electron heating and the plasma resis-
tivity. For example, the assumption of purely exponential pro-
file leads to overestimation of up to a factor of 3 in the electron
heating for MHz, see Fig. 13.
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Here, we considered only plasmas with a Maxwellian elec-
tron energy distribution function. However, in low-pressure RF
discharges, the EEDF is non-Maxwellian for plasma densities
typically lower than cm [39]. The nonlocal conduc-
tivity, and plasma density profiles and EEDF are all nonlinear
and nonlocally coupled [46]. Hence, for accurate calculation of
the discharge characteristics at low pressures, the EEDF needs
to be computed self-consistently [38], [48]–[50]. The effects of
a non-Maxwellian EEDF, nonlinear phenomena, the effects of
plasma nonuniformity and finite size, as well as influence of the
external magnetic field on the anomalous skin effect will be re-
ported in the second part of the review [51].

APPENDIX A
ANALYTICAL DERIVATION OF THE CURRENT PROFILE DRIVEN

BY VELOCITY KICKS NEAR THE PLASMA BOUNDARY

Consider that electrons acquire a velocity kick near the
boundary, in the direction perpendicular to the boundary

(A1)

The electron velocity at a distance from the boundary will
be determined by the exact moment of the collision with the
boundary at a time . The electron current in the plasma
is given by integration over all electrons with a distribution func-
tion

(A2)

For a Maxwellian distribution function
, the current in (A2) takes the form

, where and
and are the amplitude and phase of the current, respectively,
and . The functions and are shown in Fig. 1.
In the limit , the integration in (A2) can be performed
analytically making use of the method of steepest descent [1]

(A3)

where and . The integral in (A3) can be calculated
in the complex plane. The stationary phase point is given by

or . This gives the stationary
point . In the neighborhood of this point, the
function in the exponent can be expanded as a Taylor series,

.
Integration of the Gaussian gives .
Substituting this into the integration in (A3) yields

(A4)

Substituting
into (A4) gives

(A5)

APPENDIX B
ANALYTICAL DERIVATION OF THE LONGITUDINAL RF ELECTRIC

FIELD PROFILE NEAR THE PLASMA BOUNDARY ( )

The analytical solution for a longitudinal RF electric field in-
volves solving the Vlasov equation for the electron velocity dis-
tribution function (EVDF)

(B1)

together with the Poisson equation

(B2)

In the linear approximation, the EVDF can be split into two parts

(B3)

where describes EVDF of a uniform plasma with uni-
form ion density and is perturbation
of EVDF due a RF electric field. Substituting (B3) into (B1) and
(B2) yields the linearized Vlasov–Poisson system of equations

(B4)

(B5)

In the first (B4), the small collisional term with the collision fre-
quency is taken into account. In [2], Landau solved the
linearized Vlasov–Poisson system making use of the Laplace
transform for a semi-infinite plasma . However, it is more
convenient to apply a Fourier transform to an infinite plasma
by artificially continuing the EVDF and the electric field in the
semi-plane [11], [52]. Electrons moving with
reflect from the boundary and change their velocity to

. This gives the boundary condition for the Vlasov equation
in the semi-plane

(B6)

Instead of considering problem in the semi-plane with the
boundary condition in (B6), we can consider the entire plane

by artificially continuing the electric field into
the semi-plane . The Vlasov equation is symmetric with
respect to a change in variables according to the substitution

(B7)

Therefore, electrons at with , which are reflected
from the wall can be represented as electrons which came from
the semi-plane and interacted with the electric field

(B8)

As a result, the electric field has to be continued anti-symmetri-
cally into the semi-plane .
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Now we can apply the Fourier transform for the Vlasov-
Poisson system of (B4) and (B5). This gives for the components
of the EVDF and the electric field

(B9)

(B10)

Note that due the fact that the electric field is a discontinuous
function, the Fourier transform of the derivative of the electric
field is , where is the electric field
at the right side of the plasma boundary. Substituting

from (B9) into (B10) yields

(B11)

where is the longitudinal plasma permittivity

(B12)

Substituting a Maxwellian EEDF

(B13)

where , into (B12) and after some algebra [3],
we obtain

(B14)

The last term on the right hand side can be expressed in terms
of the plasma dispersion function

(B15)

The dispersion function in the form of (B15) is only de-
fined for and is defined as an analytical continuation
for . For , in the limit

(B16)
For , the imaginary part of the is negative
and we have to transform the integral (B14) so that the pole

lies in the upper plane of the complex velocity.

This can be achieved by substitution , which gives for

(B17)

As a result

(B18)

Note that because the function is symmetric with respect to
the substitution is symmetric with respect
to the substitution . Correspondingly, the symmetry of
the electric field in (B8) is preserved.

The electric field profile is given by the inverse Fourier trans-
form of (B11)

(B19)

In the limit , where .
This is in accord with the conservation of the total current in the
1-D geometry. The total current is the sum of the displacement
current and the electron current

(B20)

The total current conservation follows from the combination of
the Poisson equation and the charge continuity equation. Indeed,
taking the time derivative of the Poisson equation and making
use of the charge continuity equation gives

(B21)

In 1-D geometry it can be integrated with a constant of
space—the total current carrying through the plasma ,
which gives (B20). For a harmonic electric field considered
here, (B20) gives

(B22)

Here, we account for the relationship between the plasma con-
ductivity and the plasma dielectric function

. Equation (B22) gives

(B23)
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The same result can be obtained from (B19) after substituting
and integrating. Thus, the electric field in the

transition region is given by

(B24)

The dielectric function in the form given by (B14) is not an
analytic function of . To apply the theory of residues, Landau
proposed to split integral into two parts [2] according to

(B25)

where

(B26)

The first integral can be calculated by moving the path of
integration into the complex plane and applying the theory
of residues. For and there is only one pole

in the upper half-plane [2]. It corresponds to the
usual screening with the Debye length. In the limit

and , which gives

(B27)

Calculation of the first term in (B26) gives ,
where is the Debye length . Therefore

(B28)

For [4] and

(B29)

Substituting (B29) into (B28) gives for the last term

(B30)

where [4]

(B31)

The last integral can be calculated analytically only in the limit
by applying the method of steepest descent. In this

limit, and

(B32)

where , and is the phase-
mixing scale.

Substituting (B31) into (B30) and making use of (B32) yields
at [2]

(B33)

The plots of amplitude and phase of the electric field pro-
file given by (B30) and the approximate analytical result
(B33) are shown in Fig. 2.

APPENDIX C
ANALYTICAL DERIVATION OF THE TRANSVERSE RF ELECTRIC

FIELD PROFILE NEAR THE PLASMA BOUNDARY

The analytical solution involves solving the Vlasov equation
for the electron velocity distribution function (EVDF)

(C1)

This equation has to be solved together with the Maxwell’s
equation yielding

(C2)

where is the surface current. The plasma density is not per-
turbed in the transverse electric field; therefore there is no need
to solve the Poisson equation. In the linear approximation, the
EVDF can be split into two parts

(C3)

where describes EVDF of an isotropic, uniform plasma
with uniform ion density and is the
EVDF perturbation due a RF electromagnetic field. Substituting
(C3) into (C1) yields the linearized Vlasov equation

(C4)
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(C14)

and

(C15)

(C16)

In (C4), the small collisional term with collision frequency
is taken into account. Similarly to the case of the longitudinal

electric field, we can consider the entire plane by
artificially continuing the electric field in the semi-plane

. The Vlasov equation is symmetric relative to the change in
variables according to the substitution

(C5)

Therefore, electrons at with which are reflected
from the wall can be represented as electrons which came from
the semi-plane and interacted with the electric field

(C6)

As a result, the electric field has to be continued symmetrically
into the semi-plane .

Now we can apply the Fourier transform for (C4) and (C2).
This gives for components of the EVDF and the
electric field

(C7)

(C8)

Substituting from (C7) into (C8) with the current
yields

(C9)

where is the transverse plasma permittivity

(C10)

Substituting a Maxwellian EEDF gives [3]

(C11)

Note that because the function is symmetric relative to the
substitution is symmetric relative to the
substitution . Correspondingly, the symmetry of the
electric field in (C9) is preserved.

The electric field profile is given by the inverse Fourier trans-
form of (C9)

(C12)

Similar to the analysis of the longitudinal electric field, we split
the integral in (C9) into two parts

(C13)

where we have (C14)–(C16), found at the top of the page. Note
that for .

The first part of the electric field can be calculated
by evaluating the integral in the complex plane. A pole of

lies on the imaginary axis of the plane. The
dielectric permittivity is real and negative on imaginary axis of
the plane

(C17)

where [4]. There is
always a real value of as the root of

(C18)

Applying the theory of residues, the integral for gives

(C19)

where

(C20)

In the limit , the last term can be calculated
making use of the method of steepest descent. Substituting

in the denominator of the expression for
by its at , gives

(C21)
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which yields

(C22)

where and .
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